Optimal ROAD CHARGE Level Taking in to Accounts Marginal Cost of Public Funds

Hisa MORISUGI, Dr.Eng. Tohoku University, Nihon University and Japan Research Institute 27 August 2009

Marginal Cost of Public Funds (MCF) 1

- Marginal cost of public funds (MCF) is the marginal welfare loss of taxpayer due to the marginal tax raise
- Marginal cost of fuel tax (marginal excess burden) marginal loss of consumers divided by marginal revenue increase

Marginal Cost of Public Funds (MCF) 2

- Raise up the present tax level by 1 cent marginal loss of consumers (producers)
 - = marginal decrease in consumers' (producers') surplus
 - 1cent multiplied by present level of consumption (labor supply)

marginal revenue increase

RANS

1cent * present level of consumption (labor supply)
(present tax level multiplied by decrease in consumption (labor supply) due to the tax up by1cent

MCF of Fuel Tax

$$mcf = \frac{-1}{1 - (f / C_C) |\varepsilon_C|}$$

Marginal cost of fuel tax (marginal excess burden)

(1-(tax ratio * price elasticity))

Note absolute value of MCF is greater than 1 as tax ratio and price elasticity are usually less than 1

MCF of Road charge (mcp)

MCF of Road charge (mcp)

- Marginal cost of Road charge (marginal excess burden) marginal loss of consumers / marginal net revenue increase
- = -/(1-(tax ratio * full price elasticity))

Note Absolute value of MCF is greater than 1 as tax ratio and (absolute value of) full price elasticity are usually less than 1

Principle of Classical Marginal Cost Pricing

Classical marginal cost pricing says

- Price level of maximizing social surplus is
 - : P=0
- If MCF is not taken into accounts $(m_{cf} = 1)$

This Study says that If MCF is incorporated – Price level of maximizing social surplus is

: $P \neq 0$, where

$$-mcf \ge -1.0$$
), $say, -mcf = 1.15$

Question

If marginal cost of public funds is taken into accounts, i.e. - MCF>1.0,

why the optimal price level of maximizing the social surplus is not zero?

Social Surplus of Road Pricing Level P

Social Surplus SS 1

- Road users' benefits=consumers' surplus(=Blue area of Figure of p.10)
- Road suppliers' benefits=Producers' surplus pX (Pink area of Figure of p.10=Toll revenue) -Construction cost C+Subsides S) (=0)
- Assumption : Subsidy level is such that road suppliers' benefits=0, i.e. pX-C+S=0, or S=C-pX)
- Note: Producer's surplus in case that fuel tax is imposed is (p+f/l) (toll revenue +fuel tax revenue)

Social Surplus SS 2

• Government raise the tax level in such a way to meet the subsidy (or reduce the expenditure of some funds to meet the subsidy).

Government 's benefits=tax revenue S- subsidy S0

Tax payers' disbenefits=decrease in surplus due to the tax level up= marginal cost of the tax multiplied by subsidy= $mcf \cdot S = mcf \cdot (C-pX)$

Note The beneficiary of that funds is corresponding the tax payer above in case of reducing the expenditure of some funds to meet the subsidy.

Social Surplus SS 3

 Social Surplus SS = road users' benefits + road suppliers' benefits(=0)+ government's benefits(=0)-taxpayers' disbenefits
 = consumers' surplus CS – MCF • subsidies
 = CS+mcf • (C-pX)

Social Surplus SS = CS-mcf · pX+mcf · C

Note) *mcf is minus.*

Classical Marginal Cost Pricing 1

Social Surplus SS CS-mcf • pX+mcf • C

Assume *mcf*=-1. Then

Social Surplus SS = CS+pX-C

i.e. it assumes that the lump sum tax is possible and funding on it, but in reality not from the lump sum tax but excise tax.

Classical Marginal Cost Pricing 2

$$\max SS = CS + (pX - C + S) + (S - S) + mcf \cdot S$$
$$= CS + mcf (C - pX)$$
$$= CS - mcf \cdot pX + mcf \cdot C$$
$$= CS + p \cdot (-mcf) \cdot X + const$$

SS of
$$p=0 = CS$$

ATRANS

The price level to maximize $SS=(CS+p \cdot (-mcf) \cdot X+contant)$ is such that the differentiation of SS with respect to p is zero

the differentiation of CS with respect to p = -X (the area of *B* in Fig. of p.6 with f=0)

the differentiation of p(-mcf)X with respect to p

- = (-*mcf*) X-p (-*mcf*) b
- = (-*mcf*) (*X*-*pb*) (assume *X*=*a*-*bp*)
- = the area of (*B-A*) in Fig. of p.6 with f=0) multiplied by (-mcf)

ATRANS

differentiation of SS = differentiation of CS + differentiation of p(-mcf)X= -X +(-mcf) (X-pb)= 0

RHS of (1) = (-mcf-1)X = AB (length AB of in Fig. p.22)

As (-*mcf*)*X*=(-*mcf*)(*a*-*bp*) =(-*mcf*)*a*-*b*(-*mcf*)*p*

LHS of (1) = p(-mcf)b=(-mcf)a-(-mcf)X=CD (length of CD in Fig.p.22)

$$CD = -mcfa + mcfX = -pmcfb = (-mcf-1)X = AB$$

Formula for optimal p (no) fuel tax

• The optimal value of p is such that marginal cost of road price mcp =mcf marginal cost of funding tax

$$\frac{\partial SS}{\partial p} = \frac{\partial CS}{\partial p} + (-mcf)(\partial (pX) / \partial p)$$
$$= -X + (-mcp)(X + p\partial X / \partial p) = 0$$
$$mcp \equiv \frac{-X}{X + p(\partial X / \partial p)} = \frac{-1}{1 - |\varepsilon_p|} = mcf$$

Formula for Optimal P (with fuel tax and no parallel roads)

$$\max SS = (CS + PS - C + S + mcf \cdot S)$$

= $CS + ((p + (f / l))X - C + S) + mcf \cdot S$
= $CS + mcf (C - (p + (f / l))X)$
= $CS - mcf \cdot (p + (f / l))X + mcf \cdot C$
= $CS + (p + (f / l)) \cdot (-mcf) \cdot X + const$

Formula for Optimal P (with fuel tax and no parallel roads)

$$\begin{aligned} \partial SS / \partial p &= \partial CS / \partial p - mcf \,\partial PS / \partial p \\ &= -X - mcfX - mcf \,(p + (f / l)) \partial X / \partial p \\ &= -(1 + mcf) X - mcf \,(p + (f / l)) \partial X / \partial p \\ &= -(1 + mcf) X - mcf \,(p + (f / l)) (\partial X / \partial C) (C / X) (X / C) \partial C / \partial p \\ &= -(1 + mcf) X + mcf \,((p + (f / l)) / (p + (f / l) + cc)) |\varepsilon| X \\ &= [mcf / (p + (f / l) + mc)] X \{ [|\varepsilon| - ((1 + mcf) / mcf)] (p + (f / l)) - ((1 + mcf) / mcf) cc] \} = 0 \end{aligned}$$

$$p = \frac{\left[\left(1 + mcf\right) / mcf\right]cc}{\left|\varepsilon\right| - \left[\left(1 + mcf\right) / mcf\right]\right]} - \frac{f}{l}$$

 $|\varepsilon| = |(\partial X / \partial C)(C / X)|$ full toll road price elasticity of parallel road trafficfuel C = p + (f / l) + cc = t oll + f uel t ax+vehicle operation cost

atrans

$$p = \frac{\left[(1 + mcf) / mcf \right] \left[cc + (f / l_o)(X_o / X) \left| \varepsilon_{Ho} \right| \right]}{\left| \varepsilon \right| - \left[(1 + mcf) / mcf \right] \right]} - \frac{f}{l}$$

 X_o : Trafiic volume of parallel roads l_o^{\cdot} fuel efficioency on parallel roads $|\varepsilon_{HO}| = |(\partial X_o / \partial C)(C / X_o)|$ full toll road price elasticity of parallel road traffic

Case Study

- Fuel tax f= 60VI
- Fuel cost before tax g=40\/l
- Fuel efficiency on toll roads I=12vkm/I
- Fuel efficiency on ordinary roads I₀=8vkm/I
- Car price h=10\/vkm
- Time for 1 km run on toll roads t=0.75min/vkm
- Time for 1 km run on ordinary roads t 0=2 min/vkm
- Value of time wage after tax w=40\/min
- mcf=-1.1, -1.15, -1.2

ATRANS

Case Study

Toll road full price C=toll p+fuel tax (f/l) +operation cost before tax cc(Vvkm toll 48.33(Vvkm)

Fuel tax(f/l)60/12=5Vvkm

operation cost before tax cc(Vvkm) fuel cost before tax40/12 car price10time cost40x0.75=43.33Yen/veh-km

Case Study

	Average daily traffic volume on toll road $\mathcal X$ (vehicles/day)	Average daily traffic volume on parallel road <i>X_O</i> (vehicles/day)	Full toll road price elasticity of toll road traffic <i>E</i>	Full toll road price cross-elasticity of parallel road tarafiic \mathcal{E}_{HO}
A-1 (18.9km)	26000	38000	0.3	0.1
A-2 (12.7km	9100	26700	0.4	0.1
A-3 (21.5km)	4800	18100	0.6	0.2
S-1 (11.3km)	22900	0	0.3	0.0
S-2 (16.1km)	14100	0	0.2	0.0

A-1 mcf=-1.1

$$p = \frac{\left[(1 + mcf) / mcf \right] \left[cc + (f / l_0) (X_0 / X) \left| \varepsilon_{H0} \right| \right]}{\left| \varepsilon \right| - \left[(1 + mcf) / mcf \right] \right]} - \frac{f}{l}$$

$$p = \frac{\left[(1 + (-1.10)) / (-1.10) \right] \times \left[43.33 + (60/8) \times (38000 / 26000) \times (0.1) \right]}{0.3 - \left[(1 + (-1.10) / (-1.10)) \right]} - \frac{60}{12}$$

=15.0(yen/km)

OPTIMAL TOLL LEVEL

Concluding Remarks

- 1. This study shows the formula to calculate the optimal toll level based on the efficiency principle taking into accounts the marginal cost of fuel tax
- 2. Applying it to the several toll road section in Japan, it shows the present level is much higher than the optimal level for almost all cases
- 3. So it can be said that it is recommended to lower the present toll level except for congested roads
- 4. But the zero price level is not recommendable when takes into accounts the marginal cost of that funds to construct the roads

芳, pp. 20-29

ATRANS

・ 八田達夫:ミクロ経済学 I – 市場の失敗と政府の 失敗への対策<プログレッシブ経済学シリーズ>、 東洋経済新報社、2008.

・森杉壽芳,河野達仁:第11章 課税コストを考慮した高速道路網整備の効率的財源調達法,森地茂・金本良嗣編:道路投資の便益評価一理論と実践一,東洋経済新報社、2008.pp.281-304

・森杉壽芳,河野達仁,大村洋平:道路特定財源 調達の限界費用を考慮した効率的な高速道路料金 水準と財源調達,高速道路と自動車,2009年2月